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Abstract. Characterization of  boreal forests in ecosystem models requires temporal 
and  spatial distributions of water  content  and  biomass over local and regional scales. In 
this paper, we report on the  use  of a  semi-empirical algorithm for deriving  these  parameters 
from polarimetric  synthetic  aperture  radar  measurements. The algorithm is based on a two 
layer  radar  backscatter  model  that  stratifies  the forest canopy into crown and stem  layers 
and  separates  the  structural and biometric  attributes  of forest stands. The  structural 
parameters  are  estimated  by  training  the  model  with S A R  image data over dominant 
coniferous and deciduous stands in  the  boreal forest such as jack pine, black spruce, and 
aspen. The  algorithm is then  applied on AIRSAR images collected during the  Boreal 
Ecosystem  Atmospheric  Study  (BOREAS) over the  boreal forest of Canada. The results 
are  verified  using  biometry  measurements during BOREAS  intensive  field campaigns. 
Field  data  relating  the  water  content of tree components to dry biomass  are used to modify 
the  coefficients of  the  algorithm for crown and stem biomass. The algorithm  was  then 
applied  over  the  entire  image  generating  biomass maps. #I set of 18 test sites withm  the 
imaged  area  was used to assess the  accuracy of the biomass maps. The  accuracy of 
biomass estimation is also investigated by choosing different  combination  of  polarization 
and frequency channels of the  AIRSAR system. It is shown that  polarimetric  data from P- 
band  channels  provide similar accuracy for estimating  the  above  ground biomass for boreal 
forest types. In general, the  use  of P-band  channels  can  provide  better  estimates of  stem 
biomass  while  L-band  channels  can  estimate  the crown biomass more  accurately. When 
AIRSAR  image also used  to  simulate the  data  from existing spaceborne  radar systems, it 
was found that  the  combination  of  L-band HH polarization (JERS-l), C-band HH 
polarization  (RADARSAT),  and  C-band W polarization (ERS-1) had  limited  capacity for 
mapping  boreal  biomass (63% accuracy). 

1 



I 

I. Introduction 

There  is an increasing  interest in estimating forest biomass for both  practical 
forestry applications, carbon sequestration credits, and  other  scientific  applications such as 
modeling  the  land surface biochemical cycle. Biomass estimates  are  critical for studying 
the  ecosystem structure and  function  and  provide  the  means for assessing the  timber value, 
forest productivity, regeneration, decomposition, and fire effects. As  an  environmental 
issue of global concern, - the  estimates of biomass  will  directly  help to predct the increase of 
carbon  dioxide  in  the  atmosphere.  The  carbon  dioxide flux as  a  result  of land-use change 
and  biomass  removal or production  are  often  derived from models  that  keep  an  account of 
the  rates of carbon release and  uptake.  A source of error in  these  models is the  uncertainty 
in  the quantity of  vegetation  biomass over landscapes  as  an  input  parameter (Houghton, 
1992). 

4 .  

Circumpolar  boreal  regions  are  particularly  important  because  they  may  be  the  key 
regions for observing  the  impacts of global climate change. Recent results from Keeling  et 
a1.(1996) indicate  an  increase  in  the  amplitude  of  the  seasonal  cycle  of  atmospheric C02, 
suggesting  the lengthening of the  growing  season  in the northern hemisphere, especially  in 
higher  latitudes. Other studies  have  also  indicated  that  there  might  be  significant  warming 
and  drying  in the summer months  in  the  same  region  and  this  may  have  an  impact  on  the 
boreal forests being  a sink or source of carbon (Davis and Botkin, 1985; Tans et al., 1990; 
). These studies motivated  the  design  of  the  BOREAS  (boreal  ecosystem-atmospheric 
study)  project  that  started  in 1993. One  of  the  objectives  of  this  project is to improve the 
status of process models  that  describe  the  exchanges  of  carbon and other trace gases 
between  boreal forest and the atmosphere  (Sellers et al., 1995). Applying these models 
over landscapes requires surface  parameters  such  as land cover types and the above ground 
vegetation biomass (e.g. Running and Coughlan, 1988; Kimbal et al., 1999). 

Although forest biomass  has  been  identified  as  a  crucial  parameter  in  many studies, 
its  determination  has  posed  a  nontrivial problem. Consider the  data  presented  in Figure 1 ,  
which  show  two sets of  measurements  of  biomass for the  same homogeneous forest 
stands. The stands are all within the BOREAS study area. The first set, plotted on  the 
vertical axis, was measured by Forestry Canada in 1993, and  the second set, plotted  on  the 
horizontal axis, was  measured by one of  the  BOREAS science  teams during 1993-1996 
field  experiments  (BOREAS  information system, 1996). The 1: 1 line  (45-degree  line) is 
drawn to  facilitate  the  comparison  between  these measurements. For each stand, 
represented by  the open circles, the standard  deviation of each  of  the  measurements is 



shown. These data  were  obtained by measuring  tree DBH (Diameter  at 1.37 m  height)  and 
height in a  limited  number  of  plots (3 for Forestry Canada, and  4 for BOREAS)  and 
allometric  equations  obtained  from  destructive sampling. The species types  varied  from 
stand to stand. The  figure also shows that for the same stands there is often  a  large 
difference between  the  two  measurements.  The  differences are as  high as about 90 tonsha. 
This effect is more  pronounced for larger  values of biomass, whereas for smaller values, 
i.e., less than 50 tonsha, most measurements are close to the 1:l line, or at  least  the error 
bars  reach this line. For larger values of biomass, even the range defined by  the error bars 
does  not  include  this  1 : 1 line for many  stands. The reason for such differences could be  the 
number of plots, the  location  of  the plots, spatial  variability  within  each stand, size  and 
weight  measurement errors, and human errors. The first two of the  above factors are 
deemed to be  the  most  important ones, as they  define  the number of samples and  hence  the 
statistics of  the heasurements. The discrepancies are smaller for smaller biomass values, 
since  typically  there  are  a  larger  number  of  trees  in  each plot, and hence  the  biomass 
distribution  can  be  better  characterized. It is  also  important to note  that  the  ground 
estimation of biomass  becomes  more  difficult  as  the number of species within  the  stand 
increases such as in tropical forests (Brown  and Lugo, 1990). 

- 

An alternate  method of estimating  biomass  values has been through remote sensing 
measurements, in particular,  those from airborne  and spaceborne synthetic  aperture  radar 
(SAR) systems. In  this category, the  dominant  methods  have  been  variants  of  regression 
analyses, where a regression curve is  fitted  to  a  set  of  backscatter vs. ground-measured 
biomass  values. This curve (usually  a  line)  is  then  used over other areas and  forest stands 
to obtain  biomass for given  radar  backscatter.  Although simple and practical,  this  approach 
is generally  not  valid if the forest type  deviates from those used to obtain  the  regression 
curve (Le Toan et al., 1992; Hussin et al., 1991, Ranson and  Sun,  1994, 1997; Dobson  et 
al., 1995; Moghaddam et al., 1994; Rauste  et al., 1994; Fransson and Israelsson, 1999). 
Moreover, the  accuracy  of  the  regression  approach also depends on the  number of points 
used  in  developing  the  regression curve which  in  turn  translates into more  accurate  field 
measurements,  a difficult process  to  be  avoided. 

Another  problem  with this approach, which results from the foregoing paragraph, 
is that  the  biomass  values  used  in  regression  may  not be quite accurate. Moreover, radar 
backscatter  is  a strong function  of  canopy  moisture content, i.e., it is not  merely  the  amount 
of woody biomass, but  also  the  moisture  contained  in it that  contributes  to S A R  
measurements  (Saatchi  and  Moghaddam, 1994). The  same forest stand produces  very 
different  backscatter  depending on whether it is experiencing drought, flood conditions, 
freezing, or thawing. Therefore, a valid  biomass  estimation  algorithm  must be 
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accompanied by some knowledge of  environmental  condition  and  moisture  condition  of 
stands. In this paper, such an algorithm is developed and demonstrated. First, we  present 
a  semi-empirical  forest  model  derived  from  a  more  complicated  physically  based  model.  In 
this  model,  the  biometric  and  structural  parameters of forest canopy components are 
separated.  Structural  parameters  are  those  related  to  the  geometry  and  distribution of forest 
canopy components such as branches, leaves, and stems. These  parameters can be 
determined  by  training  the  model  once  over  known forest stands in  a radar image. The 
biometric  parameters  such as crown  and  stem  water  content  and carbon content (biomass) 
can be estimated from the  model  after  the  structural  parameters  are  determined for forest 
types. The pagr  follows by discussing the  BOREAS experiment, the  general 
characteristics of  the study area, biometry  measurements of forest stands, and airborne 
imaging  radar  data acquired during  the  experiment  in Section 2. Section 3 briefly describes 
the semiempirid model  and  the  characteristics of  an algorithm for estimating crown and 
stem  water  content and biomass. Section 4 discusses the  application and accuracy  of  the 
algorithm  and  the derived biomass  maps over the BOREAS study area. 

11. BOREAS Experiment 

A. Study Area 

The Boreal  Ecosystem  Atmospheric Study (BOREAS) is an  international  scientific 
effort to understand  the  interactions of  the boreal  landscape  with  the atmosphere. The 
experiment  was  designed: 1) to improve our understanding of the processes which  govern 
the exchanges of energy, water, heat, carbon, and other trace gases, and 2) to develop and 
validate  remote sensing algorithms for estimating  parameters  required to understand the 
above  processes  at different scales. The field and remote sensing measurements during the 
experiment  were  concentrated  at  two  sites  in  Canada:  the southern study area (SSA) is 
approximately 40 km north of Prince  Albert,  Saskatchewan  and covers an  area  about 130 
km in the east-west direction  and 90 km from  north to south (53.20N, 105.7OW)(see 
Figure 2).  The topography is gentle  and  varies  about 200 m  with  local  elevations  ranging 
from 550 m  to 730 m. The northern  study  area (NSA) is located  roughly 500 km to  the 
northwest  near Thompson, Manitoba (55.70N, 97.8OW). During  the  intensive  field 
campaigns, forest canopy parameters such  as  biomass, canopy composition, and structural 
parameters  were collected in  both  study  areas.  In  this paper, we concentrate on the southern 
study area. The SSA is  near  the  southern  limit of the  boreal forest and the transition  to 
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natural  prairie grasslands and  agricultural fields. The  age  of Forest stands in this  region 
range  between 50 and 100 years. Tree  heights in mature stands range from 15 to 22 m, 
although  there  are  stunted  black  spruce in bog areas. The  vegetation  cover is 
predominantly coniferous and  classified  as  mixed  boreal forest. On well  drained  and/or 
sandy soil  the  predominant species is jack pine (Pinus banhiana). Poorly drained  sites 
support  black  spruce (Picea mariaw) that are often  covered  with  thick layers of sphagnum 
and feather moss. Mixed stands of  trembling  aspen (Populus tremuloides), balsam  poplar 
(Populus balsamifera), and  white spruce (Picea g l m a )  are found on  well  drained  glacial 
deposits. - 
B. Field Measurements 

During the summers of 1993 and 1994, several  BOREAS  teams ,conducted 
inventory  measurements of forest stands within  the study area. These measurements 
included  identification of tree species, density, DBH (measured  at 1.37 m height), height, 
and  age  within  sampling  plots. The measurement  data  used  in  this study were  collected  by 
TE-6 (Terrestrial  Ecology  team # 6) in tower and auxiliary sites (Gower et al., 1997; 
Sellers et al., 1995). From the  plot  measurements and destructive sampling in  August 
1994, allometric  regression  equations  were  developed for three dominant overstory  species: 
jack pine, black spruce, and  trembling aspen. Often, separate sets of equations were 
developed for small  and  large  trees  depending  on  the DBH values. Using these  site- 
specific  allometric equations biomass, sapwood volume, and leaf area  were  estimated for 
each stand. The  allometric  equations for trembling  aspen  were for other deciduous trees 
such as balsam poplar. The  biomass  estimates  included  the  tree components (main stem, 
branches, and foliage) on  a  per tree basis for each live stem. Biomass values for each  tree 
were summed over each plot (four plots  per stand) and expressed in terms of kilograms of 
carbon  per  hectare (kg carbonha). These values  were  then  converted to crown and  stem 
dry  biomass in terms of kg/m2.  The four plots  at  each tower site  varied from site  to  site 
based  on  number  of stems per  hectare; whereas, the  auxiliary  site plots were  determined 
based on four prism  points or fixed plots  spaced 10 meters  in  the  cardinal  directions 
(Gower et al., 1996). Biomass  values for plots  were used to compute  average  and 
standard deviation of the  stand  crown  and stem biomass. The results of biomass  inventory 
of 18 stands within the area  imaged by  AIRSAR  are  summarized  in Table 1. 

In the process of developing  allometric  equations from the  destructive sampling, 
moisture  contents  of  tree  components for dominant species were also recorded. For all 
trees, three sections, top, middle,  and  bottom  were  sampled for measuring the moisture 
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content  of foliage, branches,  and  twigs  (see  Table 2). The  dominant species used  in 
moisture  content  measurements are jack pine, black spruce, trembling aspen, and  young 
jack pine (8-12 years).  For stems, the  moisture contents were  measured  based  on  2-meter 
sections  and for each  section  the  samples  were  taken  from  the lower end (Table 3). The 
quantities  given  in  Tables  2  and 3 are  simply  the  ratio  of fresh weight minus dry weight 
over fresh  weight. Note that  the  moisture  content of stems for conifers increases with  the 
stem  height,  whereas for deciduous trees  remains  approximately constant. To demonstrate 
this point, we  have  plotted  the  moisture  contents of trees sections with  respect  to  the tree 
heights in Figure 3. - 
C. AIRSAR  Data 

The JPL airborne  synthetic  aperture  radar ( A I R S A R )  was flown aboard  the  NASA 
DC-8 during all The intensive field campaigns  (IFC)  in summer of 1993, April 1994 during 
the  thaw  period  of  the  boreal forest, and  in  summer and fall  of 1994. The A I R S A R  
operates  at  three  frequency bands, P-band (68 cm wavelength), L-band (24 cm), and C- 
band (5.6 cm) with  fully  polarimetric  capability.  The  incidence  angle of the  radar  varied 
between  approximately 20' and 60'. The  radar  data  used for land-cover classification  were 
acquired in July 21, 1994 and processed in  synoptic  mode (50 km swath). We  have 
chosen  this  date  to  avoid possible errors in classification  due  to  the  partially  frozen 
condition during the  thaw  period and leaf-off  condition during the  fall season. We  have 
used  images from several  parallel  flight  lines  in  a  mosaic  mode to create  larger  area 
coverage over the  modeling grid. The calibration,  radiometric correction, and mosaic of the 
images  were  performed  in several steps as  follows: 

D. Image  Calibration 
In  this  study  we  have made use of synoptic SAR  images  which were acquired  with 

parallel  flight  lines  in  a  "race-track'' mode. The  synoptic  images have larger  coverage 
(approximately 50 km) but  only  three  polarizations. These images  are  often  processed for 
the  purpose of surveying the  area and are  not  absolutely calibrated. We  have processed a 
total  of  15  synoptic  images  to cover all  the  bands  and  polarizations  of  the A I R S A R  system. 
Calibration  of  images  are  performed by using fully polarimetric calibrated, frame  images 
processed over a  portion of  the synoptic images. Absolute  calibration constants were 
obtained by computing the ratios of backscattering  coefficients from identical  areas  from 
both  images  and  applying  the  calibration constants to  all  synoptic images. When  compared 
with  frame images, the  synoptic  images  were  absolutely  calibrated  with less than 0.1 dB 
error for all  polarization channels. The  frame  images  were  calibrated  both  internally  and 
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externally  using  data  collected  over  an  array of corner reflectors deployed over the 
Rosemond dry lake  calibration  site in California  before and after the A I R S A R  campaign. 
After  the  absolute  calibration,  the  images  were  resampled to ground range to remove the 
distortions in the  near  range  and far range  pixels. 

E. Incidence Angle Correction 

One  of  the disadvantages of airborne  SAR data, when used for land-cover 
classification, is the  variation of the  incidence  angle  along  the  range  lines across the  image 
(20'-60'). Consequently, areas with similar land-cover types produce different backscatter 
signatures if  they are imaged  at  different  incidence angles and depending on the  scene 
characteristics, the  variation  of  the  backscatter signature along  each range line  may be 
different. These" effects can cause inaccuracies  in  a consistent class separation over the 
entire image. Correction of  the  image for incidence  angle effects, therefore, becomes  a 
necessary  but  impossible  task to accomplish exactly. 

The  synoptic images used  in  this  study  were corrected for incidence angle variations 
accordmg to Saatchi  and  Rignot (1996). This approach  was discussed in  detail  and 
compared  with  other  approaches in the  literature.  We  plotted  the  incidence  angle  variations 
for each  range line, then  a  nonlinear  regression  in  conjunction  with  a  cubic  spline 
smoothing algorithm  was  used  to  estimate  the  general behavior of  the  incidence  angle 
variations  along  each  range line. The  regression curve was then  normahzed  by  the mean 
backscattering  coefficient of  the range  line  and  then used to correct for the  incidence  angle 
effects of that  range line. The entire image  was  then corrected line  by line. As a  result of 
this correction, the  near  range  (small  incidence  angles)  and far range  (large  incidence 
angles)  backscatter  values  are  transformed such that  they represents the  mid-range 
incidence angles  (about 350-450). 

F. Image Mosaic 

After  calibration  and  incidence  angle correction, the  images from each  frequency 
band  and  polarization  were  used  in  tandem to generate  a  mosaic  image over almost  the 
entire modeling  sub-grid.  Figure 4 shows  a color composite of the  mosaic image at  P-band 
(red: P-HH, green: P-HV, blue: P-VV).  Since  the  images  were  acquired from flight  lines 
with the  same heading, they also had  an  area  of overlap  with  adjacent images. A  linear 
feathering  technique  was  then  employed  to  remove the  tonal inconsistencies that  existed at 
the areas of overlap. In  some  areas  where  incidence  angle effects were  not  optimally 
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corrected,  the  feathering  technique  guaranteed further smoothing  at  the edges of images. If 
the  overlapping  regions  were  near  the  lakes  where  there  was  a  dramatic  change in the  radar 
backscatter signature, incidence  angle  effects  could  not  be  totally  removed and the  edge 
effects  were  still obvious in the  mosaic  image.  The  final  mosaic  image  was  then 
georeferenced and co-registered  with  land cover maps  available  in BOREAS information 
system (Saatchi and Rignot, 1997). Note  that  in  the process of removing  the  incidence 
angle  variations,  image mosaicking, and co-registeration, the absolute values of S A R  
backscattering  coefficients  and its variability  and  dynamic  range over the  scene  were 
preserved. However, the  absolute  value of incidence angle for each pixel has  been  altered. 
The incidence an21e variations over the entire mosaic  image is between 400 and 50°. 

111. Algorithm 
2’ 

The  radar  backscatter from vegetated surfaces is controlled  by two sets of 
parameters: 1)  geometric  parameters  related to the  structure  of  vegetation and soil, and 2) 
dielectric  parameters  related  to  the  moisture  content  of  plants  and  underlying soil surface. 
Environmental and physiological conditions, such as  availability  of water, freezing 
condition, and leaf out and  senescence  influence  the  structural and moisture parameters. 
The  sensitivity of microwave  backscatter  data to the  above ground woody biomass is 
primarily  due  to structure and  moisture  dependent  information  in  the data. Recent  studies 
are  primarily focused on developing  regression  type  algorithms for directly  estimating 
vegetation  biomass from radar  data  (Dobson et al., 1995; Ranson  and Sun, 1994; Ranson 
et al., 1995, 1997, Rignot  et al., 1994). However, since  both structure and moisture 
parameters  exert  control  over  polarization,  frequency band, and  angular  dependence of 
radar  backscatter data, these  algorithms  become  site  specific  and  will  not  perform  well 
under dtfferent environmental conditions (Dobson et al., 1995). 

In  this study, we  use  an  alternative approach, by first estimating  the forest canopy 
moisture  content and then  using  conversion factors between dry and  wet  weight  to  estimate 
the  above ground woody biomass. The  estimation  of  canopy  water  content is performed 
by using  a  semi-empirical  model for boreal type forests developed  by  Saatchi  and 
Moghaddam (1999). The model  is  based  on  analytical  simplifications  of  a two layer forest 
backscatter  model  in order to separate  structural  and  dielectric  parameters  in forest crown 
and  stem  layers. This model  has  been  discussed  in  detail  elsewhere  (Saatchi  and  McDonald 
1997). The  determination of structural  parameters for various forest types will provide a 
simple  model for estimating crown  and  stem  water  content  and  biomass. 
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It is assumed  that  over forest canopies, the  total  backscattering  coefficients  consist 
of three  dominant  scattering  mechanisms:  crown  volume scattering, crown-ground 
scattering, and  trunk-ground scattering. Figure 4 illustrates  the first order (no multiple 
scattering)  dominant  scattering contributions. The expressions for each  contribution 
includes scattering cross sections of canopy  constituents (leaf, branch, stem) that  includes 
parameters  related  to  size  and  angle distributions, and dielectric constants (Saatchi  and 
McDonald, 1997; Lang  et al., 1994). These expressions are mathematically  complicated 
and are  not  generally  suited for model inversion. The major  obstacle is the  mixing  of 
dielectric and structural  parameters  in  scattering  and  absorption  terms  in  the model. The 
approximations  Ktroduced by Saatchi  and  Moghaddam (1999) allows these two sets of 
parameters to be  separated in the expressions defining  the  backscattering  coefficients. 
While the  general form of the  mathematical expressions are preserved, the  simple  form 
suggests the struhural parameters  can  be  estimated using data from model  simulations or 
by  training  the  model  with  the S A R  backscatter  measurements over known forest stands. 
As a result, a  simple  semi-empirical  model  is  developed  that include only  moisture 
parameters of vegetation  and soil surface for a  certain forest type. In what follows, we 
present the  general form of  the simplified  model  and refer the  interested  reader  to  Saatchi 
and Moghaddam (1999) for more  detailed dlscussion. However, since the  model  has 
preserved in its general form and we discuss all the  terms and parameters  in  detail,  the 
reader  is  not  require  to  consult  other sources for understanding  the  characteristics of  the 
model. 

In  general,  the  total  backscattering  coefficient  measured  by S A R  is given  by: 

where  p  and  q  represent  the  electromagnetic  wave  polarizations of the  received  and 
transmitted radar signals, and c,  cg, and  tg  represent  the crown, crown-ground, and trunk- 
ground scattering  mechanisms  respectively.  In the above expression, we  have  assumed 
that the forest  canopy consists of two  layers  (crown  and trunk) and  the  direct  contribution 
from the  soil  surface is small  compared  to  other  scattering mechanisms. The  simplified 
expressions for the scattering mechanisms are given  as follows: 
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where 

ko = wavenumber 
Oi = incidence angle 
E ,  = E: - kt = dielectric constant of water 
s = nns height of surface roughness 
rp = Fresnel reflectivity of surface at polarizationp E {h,v} 

Wc = crown moisture content 
W, = trunk (stem) moisture content. 

The Fresnel  reflectivity of soil  surface  depends  on  the  relative  dielectric  constant of 
soil, E g  which is assumed to be  real for simplicity.  The  remaining  parameters, 

P h h f  ’ P w t  ’ Y h h r g  ’ Ywrg, P h h c  ’ Pwc ’ Y h h c  ’ Y h v c  ’ Y v v c  ’ Yhhcg ’ Y w c g  ’ in equations (2)-(4) 
represent  the  average  attenuation  and  scattering cross sections for the ensemble of scatterers 
within  a  forest  canopy  are  solely  dependent  on  the  geometrical  attributes of the forest 
canopy  and  are  approximately  independent  of  frequency  and  moisture content. The 
dielectric constants of water  are  given  from  mixing  models  at various frequencies and are 
listed below  (Ulaby et al, 1986). 

E ,  = 72.0 - i28.4 C - band (5.3 GHz) 
E w  = 83.2 - i7.81 L - band (1.25 GHz) 
E ,  = 83.9 - i2.77 P - band (0.44 GHz) 

In  deriving  the  above relations, we  have assumed that  the tree trunks are  vertically 
distributed  and  their  scattering  contribution  is  in  trunk-ground  interaction term  (commonly 
known as double-bounce  term)  and in co-polarized channels (Saatchi and McDonald, 1997; 
Lang et al., 1994). The crown-ground scattering term is also important  in  the  co-polarized 
backscattering  and does not  have  a  significant  cross-polarized  contribution  (Moghaddam 
and Saatchi, 1995;  Saatchi  and  McDonald, 1997). In  most cases, the crown-ground 
scattering is smaller  than  the  truck-ground scattering. Model  simulations  have shown that 
the  crown-ground  contribution is only  due to branches  whose  lengths are much  longer  than 
wavelength  and are distributed  in  vertical  direction  like trunks, while  small  branches  and 
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leaves  contribute  primarily in the  direct  backscattering  term.  The  scattering from the crown 
layer  contributes in all  polarization  channels  and  is also the  main source of attenuation in 
radar channels. Although  these  assumptions  are  based on model  simulations for specific 
forest types, they  are  shown  to  explain  the  characteristics of  the S A R  data over forest 
canopies  (Moghaddam  and Saatchi, 1995;  Richards  et al., 1987; Sun et al., 1991). The 
errors from  these assumptions and  the  general  performance  of  the  model  have  been 
discussed in our earlier  works  (Saatchi  and  McDonald, 1997; Moghaddam and Saatchi, 
1995; Saatchi  and  Moghaddam, 1999). 

Given  the  underlying  rationale for model expressions, the  structural  parameters  can 
be  estimated frogthe original  model  simulations if  the  geometrical  information  of  the forest 
canopy such as size, angle, and  spatial distributions of leaves, branches, and stems are 
known.  In  most cases, to obtain such information requires detailed destructive sampling of 
the forest canopj? This process is extremely  time consuming and  the  obtained  information 
are  often  not  representative  of  variabilities  that  occur  in nature. The  alternative  approach 
would be to  estimate  the  structural  parameters  directly from the  backscatter  data over forest 
stands whose crown and stem  biomass  and soil surface characteristics  are known. Th~s  
procedure  will  transform  the  model  to  a  semi-empirical  model  whose unknown coefficients 
are obtained  from  the  SAR  data and therefore  adjusted to the  calibration  of  the  backscatter 
measurements  at  all channels. 

In  addition to the  above  assumptions for model simplifications, we  have also 
assumed  that  the crown and  stem  biomass  are  independent  variables  in  the model. In 
general, there  can be a  relationship  between crown and stem biomass. However, as it is 
shown in figure 5 for  65 sites  in  the  BOREAS study area, this  relationship is not well 
defined  and  can  vary  with forest type and structure and may be  influenced  by 
environmental conditions and soil moisture  availability (Bonan et al., 1990; Botkin, €993). 

The  knowledge of structural  parameters  in equations (2)-(4) will  allow  the  model  to 
depend  only on instrument  parameters such as polarization,  wavelength  and look angle, 
and forest biometric parameters. Among  the  structural parameters, those associated  with 
stem scattering, Phht , Pvvt Yhhtg Y vvtg are  estimated  from  the Original  model 

simulations  because the orientation of stems are assumed vertical.  The  estimation of the 
remaining parameters, Phhc 9 Pvvc , Yhhc 3 Yhvc 9 Y vvc ’ Yhhcg 9 ~ v v ~ g  requires at 

least  seven  independent  measurements  that  can  be  readily  provided  by  polarization  and 
frequency  diversity of  AIRSAR  radar  system. 

It  is  important  to  mention  that  the  required  measurements  must be sensitive to 
desired  parameters. For example, to  estimate  the crown and  stem  water  content  and 
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biomass, it is  known  that  measurements  at  lower  frequencies  such as L-band and P-band 
are  more  appropriate  (Ranson et al., 1995;  Dobson  et al., 1992; Le Toan  et al, 1992). In 
estimating  these  parameters  from  regression analysis, one  needs  to  establish  a  relationship 
between  each  channel  of  radar  data  and the desired  parameter  separately (Dobson et al., 
1995). However, since the  model shown in  equations (2)-(4) is a  physically  based 
representation of  the backscattering,  it  automatically weighs the contribution of each 
scattering  mechanism for all  frequency  and  polarization  channels of radar  data. 

IV. Estimation of structural parameters 

Having  developed  a  simplified  radar  backscatter  model for forest canopies, we  use 
JPL A I R S A R  data and biometry field measurements of crown  and stem water content  over 
homogeneous stands for each forest type to estimate  the  structural  Parameters  in  equations 
(2)-(4). Field measurements  provide  data for forest and soil characteristics  of  trembling 
aspen (TA), old jack pine (OJP), old black spruce (OBS), and young jack pine (YJP). The 
JPL  AIRSAR  data  are  synthesized  into  three  polarizations (HH, HV, VV) for each of  the 
three bands (P-,  L-, C-bands) to  provide  nine images. In addition, during the A I R S A R  
overflight, surface soil moisture  and  rms  height  were  measured  at each site. After using  the 
biometric data in  model  equations for each stand, the  Levenberg-Marquardt  nonlinear  least- 
squares  method  was  used to estimate  the  structural  parameters (Press et al., 1990). Radar 
backscatter  data from A I R S A R  images  were  extracted on pixel-by-pixel basis in  a  polygon 
over each  stand in order to generate  a  statistically  significant  sample  population for mean 
and  variance of backscattering  coefficients over each  stand. 

The  backscattering  coefficients  from  nine A I R S A R  channels  were used as  input 
data  in  the  estimation  procedure.  The  estimation  of  structural  parameters  was  then 
performed  by  an  iterative  method  in order to  optimized  the  least square error (less than 1 
dB) between S A R  measurements  and  semi-empirical  model results. Initial  values for each 
parameter  in  the  iterative  procedure  were  provided by  the  original  model  simulations  using 
the  stand  parameters.  The  parameters  estimated for each stand are given in Table 4. Note 
that  these  parameters  are  obtained  assuming  that  the forest stands are homogeneous such 
that  mixed species and  forest gap information  have  not  been  accounted for in.the model.  In 
the case of mixed stands and in the  presence of  large gaps in  the forest canopy, we  predict 
that  these  parameters  will  be less accurate. Nevertheless, since  the  image  data over the 
stand  and  biometric  data  from  field  measurements  are  incorporated in the  estimation 
process, we  believe  that  retrieved  structural  parameters  are somehow representative of 
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density  and species variations  within  the stands. However,  at  this stage we do not enough 
data  to  investigate the errors  associated  with  canopy  inhomogeneities. 

Because  the  contributions of  the  three  scattering mechansims, crown, crown- 
ground, and trunk-ground for  each  radar  channel may vary, the  semi-empirical  estimation 
algorithms  automatically  weighs  different  scattering  contributions depending on  the forest 
type. For example, for old jack pine stands, the  main contribution  in  C-band  channels is 
due to volume  scattering of crown layer, whereas  at  L-band and,P-band both  the crown- 
ground and trunk-ground  interaction  terms are also significant. Since all  these  terms  with 
their  proportional  coefficients  (depending  on  frequency) are incorporated  in  the model, the 
procedure  estimates  the  parameters  automatically  and  all  at  the  same  time  in order to satisfy 
the error criteria (Press et al., 1990). 

By removing  the  forest  type  in  the  estimation process, we  will find mean  structural 
parameters  that ;an apply  to  any forest type in  the  boreal region. Of course, the  accuracy of 
the  resulting  equations  will suffer from the  generic  structural parameters. In  situations 
where  the forest land cover types are not known, these  parameters  can be estimated  by 
choosing a  large  polygon over the  image data as the  training area. It is important  to 
mention  that for each forest type, the  structural  parameters  are  obtained  only  once and the 
derived  semi-empirical  algorithm  can  be  used for any  radar  backscatter  data assuming the 
radar  measurements  are  cross calibrated. 

c 

Table 4 shows the  structural  parameters  estimated for four dominant forest types, 
old jack pine,  young jack pine, black spruce, and  trembling aspen, in  the study area. As 
mentioned earlier, out of  the  eleven  structural  parameters,  the four related to the  stem 
distributions  are  obtained  from  the  original  model simulations. For each forest types, we 
have  extracted  the  pixel-by-pixel  extraction of S A R  data from  all  the channels. The  number 
of pixels for each forest types are indicated  in  the  table. 

Using the  structural  parameters  in  equations (2)-(4), we  readdy  obtain 
backscattering  equations  which are specific to forest  types  and consist of four unknown 
parameters, W, , W, , S, E g .  A total of nine  equations are obtained for the  three  frequency 

and  three  independent  polarizations (CHH, CHV, CVV, LHH, LHV, LVV, PHH, PHV, 
PVV) of  the A I R S A R  system. After  the  estimation  of  structural parameters, we 
demonstrated  the  accuracy  of the simplified  model  by  comparing its simulations over a 
known  stand  with  the  original  model. The simulations  were  performed for a jack pine stand 
with  known  geometric  and  biometric  characteristics  and by varying  the forest crown and 
stem biomass, soil  moisture and roughness parameters. The forest attributes  used in the 
simulations are given  in  Saatchi  and  McDonald (1997). A total  of 625 simulation data, 
obtained by choosing 5 values for each  parameter.  The  difference  between  the  semi- 
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empirical  model  and  the  original  model for the jack  pine stand stayed  less  than 5% at all 
times,  suggesting the acceptable  performance of the  semi-empirical  model. 

To estimate  the four unknown  parameters,  we  require four independent  radar 
measurements  over  the  forest  canopy  that  are  at  the  same  time  sensitive  to  these  parameters. 
For example, measurements at P- and L-band  are  more  suitable for estimating  the  stem 
parameters  than  at  C-band.  The  sensitivity  of  each  band and polarization  combination has 
been  discussed elsewhere (Rignot  et  al., 1994; Moghaddam et al., 1995). However, as in 
the case of the  structural  parameters, we  use  all  the  available  channels  in order to gain  better 
accuracy  in  estimating  the  desired  parameters. Note that  since  the equations have  the 
proper  weights for frequency and polarization characteristics of S A R  data, the use of  more 
channels  (instead of four) does not  reduce  the  accuracy  of  estimation. In this paper, we 
are primarily  concerned  with  forest  water  content and biomass parameters. Therefore, we 
will  not  discuss"the issues pertaining to the  estimation  of soil surface parameters, even 
though  the  algorithm  automatically  estimates  all  four  parameters  at  the  same  time  by using a 
nonlinear  estimation  technique  as  discussed  earlier. 

V. Results and Discussion 

A. Validation of Algorithm Over Test Sites 

To validate  the algorithm, we  use  the S A R  data  extracted from the tower and 
auxiliary sites where  the forest stands are homogeneous and are  dominated  primarily  by 
one species. The  backscattering  coefficients  extracted from a  polygon over the sites are 
then  used  in  a  nonlinear  least  square  inversion  (Levenberg-Marquardt)  approach to estimate 
the  crown  and  stem  water content. Table 5 shows the results and  the errors as compared 
with  the  data  obtained from ground  measurements  reported by  the BOREAS science teams. 
The  measured crown and stem dry biomass  are  derived from applying  the  ratio  of  water 
content  to dry biomass  given  in  Tables 2 and 3. The estimated  values  in  Table 5 are 
obtained by computing  the  mean  and  standard  deviation of biomass for the  same polygons. 
For stands that  contain  mixed species, the  water  content is calculated  by  adjusting  the 
water  content  ratios from the  species  composition  information  given  by the S A R  
classification  results  reported  in  Saatchi  and  Rignot (1997). 
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The  overall  least-square  estimation error of all 18 sites  stays  below 10%. However, 
the difference errors for individual  sites  may  be larger. In estimating  the canopy water 
content, we have  used  all  nine channels of radar data. However, since  there are only four 
unknowns to be estimated, it is possible  to select four most sensitive radar channels for the 
parameter  retrieval. The estimation errors are  not  entirely  due  to  the  performance of  the 
algorithm  and  are also caused by  the  uncertainties of the  field  data  collected during the 
experiment. These uncertainties are primarily due to  the  natural  inhomogeneities  of forest 
ecosystem  and  inaccuracies  associated  with  the  use  of  empirical  allometric equations to 
estimate forest  biomass. The uncertainties  in  ground  measurements are shown in Figure 1 
and are numericzly presented  in  Table 1. The errors in in situ biomass measurements 
increase  with  biomass and can  vary  by  more  than 100 tonshectare  for mature and mixed 
stands. 

The  algo'iithm for water  content  and  biomass  estimation  appear to be 'the same. 
Once  the  water  content is obtained  a  proportionality  coefficient  (the  ratio of dry to wet 
biomass)  can  readily  provide  the biomass. It is therefore possible to  include  these 
coefficients  in  the  formulation of  the algorithm for each stand in order to derive  a  direct 
biomass  estimation  algorithm. The resulting  biomass  algorithm  will be inherently  different 
from regression  type  algorithms  (Ranson and Sun, 1994; Dobson et al., 1997) because 
both  the  structural and canopy  moisture  information are present  in  the  model formulation. 

B. Biomass Mapping 

As it was discussed earlier, the  biomass  estimation over individual stands is carried 
out by applying  the average ratio of the dry weight  to  water  content to the crown and  stem 
water  content  estimation of each forest type.  By  applying  these ratios, we ignore the 
moisture  variations  within  each  tree  type  as  shown  in  table 2 and 3 and figure 3. However 
since  the  tree  level  moisture  variation is smaller  than  the  spatial  variability  of biomass of 
each forest stand  0;igure I), by including  the  variations of moisture  in computing the above 
ground dry biomass,  we do not  gain  a  significant  improvement in biomass estimation. 

To apply  the  algorithm  to  the  image  data for pixel-by-pixel  estimation of biomass, 
we  used  the  land cover map  derived  from  the  SAR  data  (Saatchi  and Rignot, 1997). The 
map  separates  eight forest types  from  which  three  are  the  dominant species of jack pine, 
black spruce and aspen, and  the  rest are mixed forest classes, open  water and nonforest 
areas. For mixed forest types, we computed  new  structural  parameters  similar  to  single 
species stands. In  the  absence of a  land  cover  map,  the  algorithm  can  be  applied  to  the 
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entire image by using  average  structural  parameters  estimated by training  the  model  over  the 
entire image by excluding water  and  land  use  pixels.  Of course, in this case the  accuracy of 
the  biomass  estimation  reduces. 

To demonstrate  the  performance of existing or future spaceborne SAR systems in 
estimating  the  boreal  forest biomass, we  estimated  the  biomass over the  BOREAS sites 
using  several  combinations of A I R S A R  channels. In  table 6, we  provide  biomass 
estimation errors for various  combination  of  radar channels. The best  estimates are 
obtained  by choosing the  combination of PHH, P W ,  LHV, and CHV. The cross- 
polarized  channels  at C- and  L-band  are  primarily  due to crown scattering  mechanism and 
therefore  are  more  sensitive  to crown water  content  and biomass. At P-band the  radar 
signal  penetrates  through  the entire canopy and is more  sensitive to the stem water content. 
In particular,  the  co-polarized  channels  such as PHH are primarily due to trunk-ground 
interaction scatt&ing attenuated  by  the  crown layer. In order to avoid  the  ill-posed 
problem  of  having fewer measurements  than unknowns in  the  estimation procedure, we 
have set the  soil  moisture  (dielectric  constant )to measured  values  obtained during the  field 
experiment  at  the  time of S A R  overflights. These measurements  are  performed over 
tower sites but  used for auxiliary sites as  well. The reason for choosing soil  moisture as a 
known  parameter  in  the  algorithm  instead of soil surface roughness, is mainly due to  the 
higher  sensitivity of radar backscatter  to  soil  roughness of forest floor and the  fact  that  it is 
a  difficult  parameter to measure. 

The estimation  accuracy for L-band  and  P-band  polarimetric  data  are similar. This 
is primarily  due to the fact that  the  above  ground  biomass  in  the  boreal forests are often less 
than  the  saturation  limit  of  backscatter  at  these frequencies. However, we  expect  that  the 
performance of P-band data for biomass  estimation over other ecosystems such  as 
temperate and tropical  forests  would be  better  than  L-band. 

5. Summary and Conclusion 

In this paper, the  crown and stem  water  content and biomass of boreal  type forests 
have  been  estimated from multifrequency  and  multipolarization S A R  data. A new 
algorithm  based  on  a  semi-empirical  and  physically  based  model is used to estimate  the 
forest parameters. The  model has two main features: 1) the  structural  parameters  that 
define  the  distribution  and shape of leaves, branches, and stems are separated from 
biometric  parameters such as  water  content  and  dry biomass, and 2) a  land  cover  map is 
required to  allow  the  training  of  the  model for structural parameters, and  the  accurate 
estimation  of  the  biometrics  parameters.  Unlike  other  regression type models, these 
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features  allow the  model  to  be  used for any  forest  type and radar  data with a  minimum 
number of sites for developing  the  retrieval algorithm. In the example discussed in this 
paper, for each forest type, we  used  only  one  training site. Moreover, by using  an average 
structural  parameter,  the  algorithm  can be employed  without  the'  use of a  land cover map. 
The only  disadvantage of  this  model in comparison  with  the regression models is the  fact 
that  the  model  has to be  trained for the  estimation of the  structural  parameters. 

The algorithm  was  used to estimate crown  and stem biomass from A I R S A R  mosaic 
image over the BOREAS southern  study  area. The result of  the  estimation showed that  the 
L-band and P-band polarimetric  data  had  similar  accuracy  in  retrieving  the  biomass 
components. T G  highest  accuracy  (more  than 90%) was achieved when  all radar channels 
were  used  in  the estimation procedure. The biomass  variance  obtained from the  algorithm 
over the  test  sites  was  much  smaller  than  the ones obtained from the field data and shown 
in figure 1 and4Table 5. These results indicated  that once a  reliable  algorithm was 
developed for biomass estimation from remote sensing data, its performance  could be 
superior to the  traditional forestry methods. However, this needs to be  proved  and  verified 
over several  forest sands with  a  variety of environmental condltions. 

We also used the algorithm, with  some assumptions about  the  soil  moisture  and 
roughness,  with different combination of radar  channels  in order to  simulate scenarios for 
the  use  of  spaceborne radar. A  combination  of JERS-1 LHH, ERS-1 CVV, and 
RADARSAT  CHH channels showed only 60% accuracy. Future systems such as L-band 
polarimetric  radar  (lighter) showed 80% accuracy.  As  the  average biomass of the 
circumpolar  boreal  belt is less than 100 tonsha, we  expect  to  be  able  to  map  the  entire 
boreal forest biomass from an  L-band  polarimetric system such as lighter. Furthermore, 
given  the  fact  that  the  images  acquired  by  spaceborne systems have  small  incidence  angle 
variations  and  a  better  relative  and  absolute  calibration,  the  structural  parameters  can be 
derived  a  priori for various forest types  and  used as a lookup table for generating a  biomass 
map. 
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Figure Caption 

Figure 1. Comparison of field  biomass  measurement  of  BOREAS sites. The 
measurements are performed over the  same forest stands by  two groups. The mean and 
standard  deviations are calculated  from  biomass  values over 3 plots for Forestry Canada 
data, and 4 plots for BOREAS data. 

Figure 2. Map of BOREAS southern  study  area  and the location of tower sites. 

Figure 3. Variations of stem water  content  with  respect to height for four dominant forest 
stands, TA (Trembling Aspen), OJP (Old Jack Pine), OBS (Old Black Spruce), YJP 
(Young  Jack Pine) in the southern  study area. 

4. 

Figure 4. P-band  polarimetric color overlay of the A I R S A R  mosaic image of the modeling 
subgrid within  the BOREAS southern study area acquired on 21 July 1994. P-band HH, 
HV,  and VV polarizations  are  in red, green, and blue,  respectively. The mosaic image is 
coregistered  with  the  vegetation cover map  and  georeferenced to universal transverse 
Mercator  coordmates  with North being  parallel to the side of the  image. 

Figure 5. Schematic  diagram of dominant  scattering  mechanisms  used  in  the semi- 
empirical  model. 

Figure 6. The relation  between  crown  and stem biomass for three dominant forest stands 
in  the  BOREAS  study  areas. The figures are generated by using  all  available data points 
from  the  BOREAS  information  system  including  northern  and  southern  study areas. The 
measurements  are  taken from TE6 field data. 

Figure 7. Maps of forest crown  and stem biomass derived from AIRSAR  data. The 
caption shows the same color chart for crown and stem biomass  with different number 
associated with colors. 
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Table 1. Crown and stem woody  biomass estimates over selective tower and auxilary 
sites within SSA. The mean  and standard deviation for each stand is 
computed from four plot samples. 

G413M 70.86 131.36  2.45 44.3 1 
TE-OA 

4.91 15.22  2.88 8.87 TF-YJP 
12.14 5 1.25  3.55 9.86 TE-OPJ 
12.90 71.82 5.53  23.5 1 TE-OBS 

3 1.09 158.92 5.69 18.32 
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Table 4. The structural  parameters of forest  types  estimated from model simulations and  SAR 
data.  Among  the  structural  parameters  those  related to stem  are  estimated  from  model  simulations. 
Crown  and stem biomass, soil moisture,  and surface roughness for each forest stands are obatined 
from  field  measurements. 

. .  

Forest  Parameters 

1.522 

0.887 2.351  0.986  1.832 

YJP OBS OJP TA 

wc (kg/m2) 

7.182  5.25  1  15.89 y (kg/m2) 

- 

s (cm) 1.8  3.2  0.89  1.3 
4. 

sm  (percent) 12% 14% 10% 21% 

'hhc 
0.00075 

0.000005 0.00170 0.01205  0.00303 

0.00023  0.0003  1 0.00041  0.0003 1 

0.00013  0.00017 0.00023 0.00017 

0.00012 0.00010 0.00025 0.00022 

0.00008 0.00006 0.0001  1 0.00005 

0.00017 0.0001  8  0.00048  0.0002  1 

0.00290 0.00290  0.00290  0.00290 

0.00150 0.0015  0.00150  0.00150 

0.00076  0.009  1 0.00042  0.0009  1 

0.00063 0.00015  0.00035 

pvvc 

'hht 

B,, 
"hhc 

"hvc 

y vvc 

'hhcg 

y wcg 

'hhtg 

0.01 102 0.01005 0.0 169  1  0.03019 " vvtg 
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Figure 4. 
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